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Introduction 

Recently there has been some interest in using the magnetic field 

inside a current-carrying cylindrical conductor to focus particle beams.'-' 

Applications include focusing targets and lithium lenses. The calculations 

described in this report were done in connection with the design of a 

lithium lens to focus antiprotons just downstream of the production target 

for the pp collider at Fermilab. However, many of the results are 

generally applicable for any pulsed cylindrical conductor. 

For the simple case of a cylindrical conductor of radius rO carrying 

total current I with uniform current density 3 the magnetic induction i 

inside the conductor can be found from Ampere's Circuital Law. Using the 

International System of units (SI) this law can be written 

4Zi.d; = ,fi.d: 

where the magnetic permeability u for a linear material is given by 
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lJ = UrPo, with ur being relative permeability and with ue = 41 x lo-' 

henry/meter. Applying the Law results in the expression 

B(r) = * Y 
2n T 

or 

B(r) = B(re) > 
0 

(1) 

(2) 

where B(r ) is the value of the field at the surface of the cylinder. 
0 

Since the material is assumed to be linear (g = !.I:) equation (2) can also 

be written 

H(r) = H(re) > 
0 

For many applications the Joule heating from direct current is 

prohibitively large. To minimize heating these devices are often pulsed 

with a sine-like unipolar pulse whose width r/2 is small compared to the 

time between pulses. For the pulsed device an expression describing the 

magnetic intensity 6 as a function of radial position in the conductor and 

time can be derived by solving Maxwell's equations with appropriate 

boundary conditions. A solution applicable to a pulsed lithium lens with 

I = Iaslnwt for 0 < t < v/w is given in reference 8. This paper assumes 

the cylindrical conductor is a component in an RLC circuit and has a pulse 
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shape modified by a damping factor 8 -at where a D R/2L. The mathematical 

description of the pulse form is I = IOemat sin& for 0 < t < n/w where 

w = 271/r and I = 0 between pulses. 

The paper is presented In three parts. In part A an expression for 

d(r,t) is derived and the time during the pulse corresponding to maximum 

linearity is calculated. In part B an expression for the current density 

Jz is derived and a method for measuring J, at the surface of the conductor 

is discussed. Part C describes Joule heating, including the radial 

dependence of temperature and the total heat deposited per pulse. 

A. Magnetic Field Intensity in a Pulsed Conductor 

This section describes a derivation of an expression for the magnetic 

field intensity fi in a pulsed cylindrical conductor. The time at which the 

field is most linear and the gradient at that time are also calculated. 

Assuming that the displacement current is negligible the appropriate 

Maxwell's equations are 

+ + * + 
JEVXH (3) J = o; (6) 

+ 
(4) B = ut; (7) 

* * 
V * H= 0 (5) 

where CT Is the conductivity and t is the time. 
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Taking the curl of both sides of (3) and using (6) gives 

$ x (? x ii) = 

Using appropriate vector identities 

+ 
++ 
VaH = o-u 

$ x 0s 

and (4), equation (8) becomes 

(8) 

(9) 

Assuming that the cylinder is coaxial with the z axis, that %has only an 

azimuthal (d) component and that the magnitude of z depends only on r and 

t, equation (9) simplifies to 

(10) 

where H is the azimuthal component of 3. The boundary conditions are 

H(r,O) = 0; H(O,t) = 0 (11) 

and H(ro,t) = Hoe-atRe{ie-iwt} (12) 

where H is the maximum value of H for an undamped pulse. The problem is 
0 

inhomogeneous because the right-hand-side of (12) is nonzero. A general 

solution to (10) can be found by solving the homogeneous problem with 

H(re,t) = 0 and then adding a particular solution satisfying (12). The 

homogeneous problem is an eigenvalue problem which is solved using the 

separation of variables technique. A solution to the homogeneous problem 

iS 
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Hh(r,t) = ~ajJl($r)e-*PaU (13) 

Where J,(x) is a first order Bessel function with a real argument, XJr, is 

a root of J,(x) = 0 and the a 
J 

are coefficients to be determined from the 

boundary conditions at t = 0. 

A particular solution is found by separating variables and assuming a 

damped sinusoidal time dependence. Thus 

Hp(r,t) =3((r) T(t) 

where T I Ce-* and y = a + 10. This leads to the equation 

d2Hp 1 dHp 
Hp. _ +32H -+f:r--7- 

dr2 r P 

(14) 

(15) 

where g2 = cruy = up(a + 1~). Letting cn~ = 2/82, the expression IIAKI!J 

becomes 2i/62. The variable 6 is commonly called the skin depth. Thus g2 

can expressed in terms of the attenuation coefficient a and the skin depth: 

82 = qla + 21/82 

Equation (15) takes the form 

s!E+;$+(B’ - ’ 
dr2 

7) $= 0 

This is a Bessel equation having the solution 

(16) 
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H(r) = AJI(Br) (1-f) 

where J;(Br) is a first order Bessel function of complex argument. 

Applying the boundary condition (12) to (17) and substituting the result 

into (14) gives the particular solution 

Hp(r,t) = H 
(18) 

A general solution to (10) is the sum of expressions (13) and the real part 

of (18). 

2 
iJl(Br) e-yt) + ?a3 Jl(Xjr) e-' t'W 

(19) 

H(r,t) = Ho Re { 
Jl(Br,) 

The aj coefficients are evaluated using the boundary condition H(r,O) = 0. 

At t = 0, equation (19) becomes 

0 = -HO Im I1:E))+ ?a3 JI (XJr). 
I 0 

Applying the orthogonality properties of JI(Xjr) leads to 

2H 
a 0 

3 = r Z[J2(Xjr0)12 
0 

fi JI(Xjr) Im ~~~~~) dr- 

0 

Evaluating the integral gives 
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r2 Q-0 ‘1 
aj = -4Ha 0 

62 [(A~-Uw)r~12 + 4(rs/6)' JO($ro) 

The time dependence of the penetration of the field into the conductor is 

illustrated in Figure 1 which shows H/H vs r/r for various values of a$ 
0 3 

with 6/r0 = 0.5. Fig. 2 presents the same information in a different way, 

with H/Ha plotted vs ot for various values of r/r . 0 

The time at which the field is most linear depends on &/r and a. This 3 

time can be calculated as follows.g 

(AH)a = CH(r,t) - G(t) r12 (20) 

is a measure of the deviation of the field from linearity and the 

expectation value of (AH)2 is 

<(AHH)2> = l -$t (AlS)2 rdrdd (21) 

The value of G corresponding to a mimimum expectation value is found by 

solving the equation 

; <(AH)3 = 0 

or 

- -$ {?2H(r,t) dr + ttfisdr = 0 (22) 
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from which 

--Yt 
G= d- HoRe(leg 

=o* (23) 

A measure of the goodness of fit to a straight line is found by 

substituting (23) into (21) and performing the integration. Some results 

are presented in Fig. 3 whioh shows the deviation from linearity as a 

function of time for ,6/ro=0.3 with a&I and &lOOO set-'. The case where 

6/ro=1.0 is shown for comparison. The results of evaluating (21) for 

various values of 6/r0 are given in Fig. 4 which shows the time 

corresponding to maximum linearity vs 6/r0. For 6/r0 > 0.7 the summation 

over j in (23) becomes negligible and one can derive an expression fOP 

(wtJt' the time corresponding to maximum linearity as follows. 

Substituting the first term of (23) into (21) leads to the expression 

where 

<(AH)% = ;1 e "2 -2at~~~ef2e‘2iWt + ffdrdr 

J1(6r) 

f = J1(Bro) 
4r J2(6ro) 

- p JL(6ro) 

(24) 
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The optimum value of wt is found by differentiating (24) with respect to wt 

and setting the derivative equal to zero. This leads to the result 

Imf'rdr 

Ref2rdr 

(25) 

The error introduced by this approximation increases as 6/r0 decreases,, 

ranging from 2' at 6/r. = 0.5 to go at 6/r0 = 0.3. The values shown in 

Fig. 4 were calculated using the complete expression (23) rather than the 

approximation. Fig. 5 shows H/Ho vs r/r0 when the field is most linear. 

B. Current Density in a Pulsed Cylindrical Conductor 

An expression for the current density may be derived using Maxwell's 

equation; = $ x i!. The curl of the expression for z(r,t) given in (19) has 

only a s component 

J,(r,t) = HORe [iebYt "~"~~~',] + xajhjJOOjr)e -A/w 
zi 

lo j (26) 

Fig. 6 shown Js vs r/r0 for various times during the pulse- Fig. 7 
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contains the same information with Jz vs W for various values of r/rC. The 

curve describing Js at the surface of the conductor vs wt is of particular 

interest because it is related to the potential difference between two 

points on the surFace of the conductor via the equation V = Icad; = pl;.di 

where p is the electrical resistivity of the conductor. Consider a line 

segment of length L, parallel to the axis of the cylinder and having as its 

endpoints two points on the surface of the cylinder. The potential 

difference between these points at time t is LpJs(ro,t). Measurement of 

this potential difference provides a sensitive test of whether or not the 

actual device is producing the expected field.lO 

C. Joule Heating in a Pulsed Cylindrical Conductor 

An expression for heatingdue to ohmic losses canbe found by evaluating 

the integral I?*$ dtdV. This will be done assuming constant resistivity 

during the pulse and then a method for taking into account a changing 

resistivity will be given. The radial distrtbution of heat is given by 

n/w 

q,(r) = p .J;dt 

Using (26) for Jz one obtains 

s,(r) = 

+ 2 7 Re[ig 

+ ,,cc .w Jo(xjr) Jo(hnr)(~-e-ns2(1~+h~)'z) 
j * j n 

(27) 
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The units for q. are Joules/m' and the temperature rise AT(r) can be 

calculated from (27) by dividing qO(r) by the heat capacity c. The total 

heat generated per pulse unit length is given by 

Q, ;A0(r)2nrdr 

The result of this Integration is 

4aHoro J 0.r 1 l+e-T(a+A;/OiNW 

+ u iB2c a A. 0 
j j3B -xj Y+XLlw j 

(28) 
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Both (27) and (28) were derived assuming a constant resistivity. An 

approximation which can be used to take into account the temperature 

dependence of resistivity is given by Knoepfel.ll The resistivity can be 

parameterized by 

P = P,(l+bP) 

where b is the heat factor and P the increase of heat content relative to 

O°C. In the solid phase 

In the case of lithium, one uses the slope of a p vs T curve and the value 

cv.2.0x10b J~-'/T to calculate b=2.4x10m9 ms/J. If PO is the heat per unit 

volume calculated in (28) then the "corrected" value is 

ebQo,l 
Q= b (29) 

Fig. 8 shows the total heat deposited during a single pulse of a 1 cm 

radius lithium cylinder with IO.500 kA. The dashed curve is the result of 

evaluating (28) and the solid curve includes the correction specified in 

(29). Fig. 9 shows the radial distribution of heating including the 

correction for changing resistivity. 

D. Some Conclusions 

In designing a focusing target or a lithium lens it is necessary to 

optimize several parameters. Linearity is improved by increasing the pulse 

length but the longer the pulse the greater the demands on the cooling 
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system. For lithium, which melts at 180°c one must decide whether to try 

to prevent melting or to operate with the lithium in the liquid state. The 

volume expansion upon melting stresses the vessel so an effort should be 

made to keep the lithium in one state or the other. For 6/r0 values around 

0.5 the maximum linearity occurs 20-30“ after the current peak (Figs. 2 and 

4). To achieve the required gradient at that time during the pulse, the 

peak current may have to be scaled up. Thus, increased linearity requires 

increased power and heat load. Finally, the optimisation for linearity was 

calculated assuming a uniform distribution of particles impinging on the 

lens. For a focusing target where the incident particles are concentrated 

on the axis the optimum time could be different from the one given here. 
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